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The method developed previously (Youngren & Acrivos 1975) for obtaining 
numerical solutions to the Stokes equations for flows past solid particles is 
extended to problems with free boundaries. This technique is applied to the 
determination of steady shapes for an inviscid gas bubble symmetrically placed 
in an extensional flow. For large surface tension the computed bubble shape is 
found to be in excellent agreement with that obtained analytically by BarthBs- 
Biesel & Acrivos (1973), while for small surface tension it agrees with an expres- 
sion derived by Buckmaster (1972) using slender-body theory. 

1. Introduction 
In a recent communication (Youngren & Acrivos 1975, henceforth referred to 

as I), the problem of obtaining the solution of the Stokes equations for flow past 
an arbitrary solid particle was reduced to that of solving a system of integral 
equations of the first kind for a distribution of Stokeslets on the particle surface. 
First the validity and accuracy of the approach were demonstrated by comparing 
the numerical results with known analytic solutions and then new solutions 
were computed for several problems involving finite cylinders. However, many 
interesting and significant systems in creeping flow involve liquid drops and gas 
bubbles which are deformable and whose shape, being unknown a priori, must 
be determined as part of the solution. 

Techniques for dealing with such systems have been presented by Richardson 
(1968), who considered the case of an inviscid two-dimensional bubble freely 
suspended in a hyperbolic or in a simple shear flow, and by Buckmaster & 
Flaherty (1973), who dealt with the corresponding problem of a two-dimensional 
drop freely suspended in a hyperbolic flow of a liquid having the same viscosity. 
However, since both studies were based on the use of complex-variable theory, 
their approach cannot be extended to the more realistic three-dimensional case, 
and hence it would be useful to adapt the general method of I to these so-called 
free-boundary problems. This appears to be feasible, because equation (2.9) in 
I applies whether the surface is rigid or not and in fact can be viewed as consisting 
of three equations which relate the three components of the stress force on the 
surface. To be sure, when, as in I, the surface is rigid, the no-slip boundary 
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condition reduces these relations to a system of three integral equations of the 
first kind for the three unknown components of the stress force; however, the 
development certainly applies to more general boundary conditions. For example, 
in the case of an inviscid gas bubble, all three stress force components and one 
velocity component on the surface are known and the integral relations (I 2.9) 
become three integral equations for the two unknown velocity components and 
the steady shape. The exact details for implementing this method will now be 
described and the technique will be illustrated by obtaining a numerical solution 
to the problem of finding the shape of an inviscid gas bubble symmetrically 
placed in an extensional flow. 

This example is, of course, part of the more general problem of determining 
theoretically the steady shape of an individual drop or bubble freely suspended 
in an unbounded shear flow of another fluid, a subject of considerable interest to 
the field of emulsion rheology. Unfortunately, the problem is so difficult that 
analytic solutions are possible only in very special cases. Thus, when the Reynolds 
number is sufficiently small for the creeping-flow equations to apply, Taylor 
( i932,  1934), Cox (1969), Frankel & Acrivos (1970) and BarthBs-Biesel & Acrivos 
(1973) constructed solutions for slightly non-spherical drops and bubbles by 
expanding tjhe unknown shape in terms of its deformation from sphericity. Within 
this context, the special case of an inviscid gas bubble symmetrically placed in 
an extensional flow has been considered in detail because of its relative simplicity. 
Steady shapes were obtained by Frankel & Acrivos (1970) and by Barthks- 
Biesel & Acrivos (1973) for values of k, the ratio of surface tension to viscous 
forces, greater than approximately 10, but steady solutions could not be found 
by their method for smaller k.  At the other extreme, i.e. when k is very small, 
the bubble becomes elongated and its shape was given analytically by Buckmaster 
(1972), who used slender-body theory with a distribution of sources and Stokes- 
lets along the bubble axis. Surprisingly, Buckmaster found a multiplicity of 
steady shapes for each (small) value of k, the non-uniqueness resulting from the 
fact that a parameter appears in his solution which can assume an infinite number 
of discrete values. Apart from their non-uniqueness, these slender-bubble 
solutions are also open to question because they may not correspond to a branch 
that is physically attainable when the bubble is progressively elongated from 
its initial spherical shape following a steady increase in the strength of the applied 
shear. Thus there exists a need to determine steady shapes for intermediate k 
and, if possible, to ascertain whether some of the slender shapes that are predicted 
from Buckmaster’s analysis can be attained at  small k. This aim will be accom- 
plished by adapting the method of I to this problem. 

2. Problem statement and method of solution 

is described by 
Creeping extensional flow past an incompressiblet inviscid gas bubble (figure 1) 

a2V,lax,axi = appxi,  avjpxj = 0, x E Q, (2.1) 

t The method of solution for a compressible bubble is briefly discussed following (2.1Oj. 
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FIGURE 1. Gas bubble symmetrically placed in an extensional flow. 

( 2 . 2 )  

together with the requirement that V ,  the bubble volume, should remain con- 
stant. Cartesian tensor notation is employed, vi is the fluid velocity, €' and F* 
are the liquid and gas pressures respectively, tij = -Ps i ,  +p(avi/ax, + avj/axi) is 
the stress tensor for the liquid, ni is the inward unit normal to the gas-liquid 
interface X, G is the shear strength of the undisturbed flow, p is the liquid vis- 
cosity and y is the surface tension. Introducing the disturbance velocity u, E vi - 
and non-dimensionalizing all distances by a, the radius of the spherical bubble 
in the absence of any shear, all velocities by Ga, the stress tensor in the liquid 
phase by Gp and the gas pressure by yla, (2.1) and (2.3) become 

P-tO, vi-+GCijxj = Q as (xjxj)*-+oo, 

t i jn j+ P*ni = -niyanj/axi, v in j  = 0 on S ,  
c. 23 . = 24,  sj, - CJi2 sj2 - 4, sj3, 

a2ui/axjaxj = ap/axi, au, /ax, = 0, x E Q) (2-3) 
u,-+o, P + o  as (xjxi)*-+co, (2.4a) 

(2.4b) 

( 2 . 4 ~ )  

u.n. 1 3  = -C..z.n 23 3 i 

cijnj  = - En,(anj/axj + P*) - 3Ciin, 

where the dimensionless parameter k = y/pGa and 

Also, we need to satisfy the condition V = &i-, where V is the dimensionless 
bubble volume. 

As shown in I, the velocity ui and the stress force fi = ci jnj  on S are related by 

1 on 8, 

c.. 2 1  = - - psi, + auipxi + aui/axi. 

28-2 
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where x and y are position vectors, integration over S is with respect to y, and 
r, = Ix-y]. At first glance it might appear that (2.5), which can be written 

could be solved as follows: assume a bubble shape, compute Fi from (2.4c), 
determine uc by solving numerically (2.6), which now becomes an integral equa- 
tion of the second kind, and then adjust the shape of the bubble until the kine- 
matic condition (2.4 b )  is satisfied everywhere on S. Unfortunately, though, 
this apparently straightforward procedure is difficult to implement for the 
following reason. As shown by Ladyzhenskaya (1963, p. 59), the adjoint to the 
homogeneous part of (2.6), 

r r  

has a single eigensolution, equal to ni(x), and therefore the homogeneous part 
of (2.6) has also a single eigensolution uf). It can easily be shown of course that 
ni, the eigensolution of (2.7)) is orthogonal to the right-hand side of (2.6) because 

//sni(x)4(Z.Y)dSz = 0, 

and hence a particular solution uk' to (2.6) does indeed exist. Nevertheless, since 
the complete solution to (2.6) will contain an unknown multiple of ut), the pro- 
cedure just outlined would be cumbersome from the practical point of view. 

An alternative approach was therefore selected which did not suffer from the 
deficiencies described above. First, in view of the axial symmetry of the present 
problem, it is convenient to transform to cylindrical co-ordinates with the 1- 
direction parallel to the axis of symmetry and to express ui and fi in terms of 
their normal components u, and f, and tangential components ut and f t  (with 
vt > 0 if u1 > 0): 

Here, and in what folIows, the tensor summation convention is abandoned and 
the subscript r denotes the radial cGmponent in cylindrical co-ordinates. Because 
of the axial symmetry, (2.5) can be integrated analytically in the azimuthal 
direction to yield, after rearrangement, 

ut = uTnl-ulnr, u, = ulnl+u,.n,. 

1 s_l K,(% Y, R) Ut(Y) 4Y + nr(4 U t ( 4  

1 1 1 
= K z f n d y  + n1un +jP1 K,undY +J-l KaftdY (2.8a) 

The kernels K are given by Youngren (1976) and are available from the authors 
on request. Also z and y are the l-components of x and y, R(x) is the unknown 
radius of S and 1 is defined by R( k 1) = 0. The requirement of constant bubble 
volume becomes 1; R2(x) dx = 3, ( 2 . 9 ~ )  
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while the boundary conditions (2.4) reduce to 

u, = -2n,x+nrR I 
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-p* -2(3n?-l) on X, (2.9b) 1 I 1 R" f, = k[ --- 
R( 1 + R'2)* (1  + R'2)Q 

ft = 6n,nr I 
which are to be substituted into the right-hand sides of (2.8a, b). A solution to 
the above system can then be obtained by assuming an initial R(x) ,  determining 
the kernels K in (2.8) plus u,, f, andft [the latter three quantities from (2.9b)], 
solving the two integral equations of the second kind ( 2 . 8 ~ ~  b)  independently for 
ut as in I, and then adjusting R(x)  until the two functions u, thus computed 
agree with each other to within a specified relative error. It is worth noting that 
the condition (2.9a) can be disregarded during this iteration because, once a 
converged solution has been computed, the solution to the original problem, 
denoted here by a caret, can be recovered simply using the transformation 
( f ,  A,&) = a- l (k ,  R, x), where 

a = (%I; R2(2)d$. 

Of course, this method will run into difficulties if the homogeneous parts of 
(2.8a, b )  have an eigensolution which is the same for both equations. This will 
be the case if niu(i"' = 0, where, as before, uy) refers to the eigensolution of the 
homogeneous part of (2.6). Noting though that for the sphere and for the long 
circular cylinder up) = n,, we can take i t  for granted that uie) will not be every- 
where orthogonal to ni, except perhaps for bodies of very unusual geometry; 
hence it should be possible to obtain a solution of (2.8) subject to (2.9) using the 
scheme just outlined. 

It should also be mentioned a t  this point that, as can be easily verified, any 
constant scalar multiple of ni, when added to fi, does not contribute to the right- 
hand side of (2 .5)  since the corresponding term vanishes upon integration with 
respect to dS, over S.  Consequently, the gas pressure P* in ( 2 . 4 ~ )  and (2.9b) 
can be set arbitrarily, e.g. equal to zero, without affecting the bubble shape R ( x )  
as computed from the procedure just described. For an incompressible bubble, 
the value of P* is evidently of little interest but, if required, it can be determined, 
once a converged bubble shape R(x)  has been computed, using, for example, the 
condition that 

(2.10) 

where, again, up is the eigensolution of the homogeneous part of (2.6). The above 
follows directly from the reciprocal theorem (Happel & Brenner 1965, p. 85) 
and the fact that ni is the surface stress force corresponding to the eigensolution 
uf), Equation (2.10) can also be used together with an equation of state, e.g. the 
ideal-gas law P*V = constant, to determine P* for a compressible bubble. I n  
the latter case, P* is of course an integral part of the solution since its value is 
required to specify the volume V.  
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In  the computational scheme just outlined, the iterative determination of R 
was readily accomplished using Newton's method to calculate systematically 
successive approximations R(n) to R. Specifically, denote the collosation points 
of the numerical scheme described in I by x, (m = 1,2, .. ., N ) ,  define h, = R(x,,J 
and let 62) and Qg) be the solutions of (2.8a, b )  respectively at x,, calculated in 
iteration n. Then expand 

Qp+U = Qp) + (aGi/ahj)(n) [hp+1) - h?)] + ~ [ ( h p + l )  - h ~ ) ) 2 ] ,  I 

with a similar expansion for Summation over j from 1 to N is implied. 
But convergence is achieved when &?+l' = Q\n+l), which implies that at  con- 
vergence 

0 = a p  - Gin' + [hF+l) - h;9] (aai/ahj - aQt/ahj)(n) + o[(hy+" - h 9 2 ] ,  (2.11) 

(2.12) O r  h$+U = hi"'+ (A$?))-1 (Gi - q n )  + O [ ( h $ t L  lL'"')27, 3 

where {AE)) = {(aQt/ahj-aQ,/ah,)(n)} is referred to as the Jacobian mat,rix. The 
Jacobian was calculated numerically by perturbing hy by Ah?' and then solving 
(2.8 a, b )  for &in'+ AQLn) and Gin)+ AQLn' to yield 

Early attempts to obtain solutions for k = 5 with a spheroidal shape as the 
initial guess R(l) all failed, thereby indicating that the radius of convergence of 
Newton's method as implemented here is not very large, a conclusion that was 
also reached during the course of obtaining the solutions to be described in $3.  
Thus the iteration was carried out starting with a sphere, which is the shape of a 
gas bubble in the limit of infinite k, as the initial guess for k = 20. The converged 
solution for each k was then used as the initial guess for the next smaller k. This 
method of obtaining solutions is natural, and corresponds to the course of a 
hypothetical experiment in which, beginning with a sphere in a stagnant fluid, 
the bubble is progressively extended by incrementally increasing t'he strength 
of the extensional flow. 

Convergence was accelerated by under-relaxing as follows: (i) define the error 

which is the absolute value of the right-hand side of (2.11); (ii) rather than 
attempting to drive the error to zero everywhere using (2.12), under-relax by 
accepting a relative error 

Ey)  = ( I - w )  \ G p - & p l ,  0 < w 6 I, 
and (iii) minimize 

a measure of the change in shape at iteration n + 1, subject to the constraints 

W(7L+l) (hi.n+l)- hW) 3 (hY+l' - hm), ( 2 . 1 3 ~ )  

- Ep) < A$!)(h@+U 3 - h(F)) + &,in) - Gin) < Ein), (2 .13b)  

This provides for non-uniform under-relaxation and prevents sudden, drastic 
changes in shape. This was found to be advantageous since once a shape R(n+l) 



A gas bubble in a viscous extensional flow 439 

was produced which was not smooth (as a result of one or several of the quantities 
(hp+l) - hl,”’)/hy’ being large) the procedure would immediately diverge. Note 
that when the relaxation factor o is unity the constraints are tight and no 
relaxation occurs, while as o+O the solution to (2.13a, b )  is R(n+l)+ R(n). 

The €act that the objective function Wen) of the minimum problem (2.13a) is 
quadratic with linear constraints (2.13 b )  suggests that the powerful techniques 
of quadratic programming (Wilde & Beightler 1967, p. 69) could be applied to 
this problem. However, since the purpose of this work was not to obtain an 
accurate solution to (2.13a7 b)  (which would be used only once and then dis- 
carded), a simple efficient direct climbing technique (Wilde & Beightler 1967, p. 
271) was employed to approximate the solution to the minimum problem. 

Since the numerical method assumes that Bn) is known for - I  6 x 6 I and 
since (2.9 b )  requires that R’@) and R”(n) be available for - 1 6 x 6 1, the method 
of interpolating R(n) in terms of hy’ is quite important. A natural choice is to 
use spline functions since the method of solving (2.Sa, b )  divides the interval 
[ - 1, Z] into N subintervals, which is exactly what is done by splines. Cubic 
splines, which render R”(n) continuous, were employed using standard methods 
(Reinsch 1967). 

3. Results 
The final bubble shapes are sketched in figure 2, where xl = 0 is a plane of 

symmetry and the 1-axis is the axis of symmetry. The calculated shapes for 
k 5 15.0 are in excellent agreement with the results of Frankel & Acrivos (1970) 
for large k while, as shown in figure 2,  those for k 5 4 agree very well with one 
of the shapes given by Buckmaster’s (1972) slender-body analysis, which is 
thus seen to be physically attainable. In  all cases R(n) was considered to have 
converged if Wen) < iO-8/w. The optimum value of o was found to decrease from 
0.9 for k = 15 to 0.5 for k = 4. Also a small N ,  typically 8, was used during early 
iterations but was eventually increased to 14 for the final determination of R. 
For efficiency, since the Jacobian matrix changed only slightly with each itera- 
tion and since the converged solut,ion for k was used as the initial guess for the 
next lower k, the Jacobian for the higher k was employed in all iterations for the 
new k until convergence was attained, and the Jacobian was then updated 
(however, in one case the Jacobian was updated before convergence in order to 
accelerate the process). 

As is customary in considering shapes of drops or bubbles, the deformation 
D 5 (Z- R(O))/(Z+ R(0)) is shown in figure 3, which illustrates the excellent 
agreement of the O(k-l)  analysis of Frankel & Acrivos (1970) and the O(k-2) 
theory of BarthBs-Biesel & Acrivos (1973) with the numerical results at large k. 

Thus it seems clear that there are steady solutions for all k down to k = 4 
for an inviscid gas bubble in an extensional flow. This is in agreement with 
Buckmaster’s (1972) analysis and contradicts the prediction of Barthks-Biesel 
& Acrivos (1973) that inviscid drops will burst if the strain is too large. As con- 
jectured by these authors, the failure of the perturbation methods that apply 
for large k to predict steady solutions for k less than a certain value probably 
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FIGURE 2. Steady shapes of an inviscid gas bubble symmetrically placed in an extensional 
flow. - , numerical solution; - - -, slender-body theory (Buckmaster 1972, n = 2, 
k = 4.4). 
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FIGURE 3. Deformation of an inviscid gas bubble in an extensional flow. -A-, numerical 
solution ; . . . -, O(k- l )  theory (Frankel 8; Acrivos 1970); - - -, O ( P )  theory 
(Barthits-Biesel & Acrivos 1973) ; - - - , slender-body theory (Buckmaster 1972, 
.n = 2);  --- , limiting deformation. 

results from one's inability to represent a bubble shape which is quite non- 
spherical in terms of a series containing a small number of surface spherical 
harmonics. At any rate, though, it is evident that the predictions made by 
BarthBs-Biesel & Acrivos (1973) concerning the bunking of drops of low vis- 
cosity should be treated with extreme caution, not only because of the failure 
of their theory for inviscid bubbles in an extensional flow, but also because, as 
shown in their paper, the agreement between their analysis and the available 
experimental data for hyperbolic and simple shear flows becomes progressiveIy 
worse as A, the ratio of the drop viscosity to that of the external fluid, is 
decreased. 
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I I I 

k 

FIGURE 4. Maximum radius of t~ gas bubble in an extensional flow. -A-, numerical 
solution; . . * . 1, O(k- l )  theory (Frankel 85 Acrivos 1970) ; - - -, O ( k 2 )  theory (Barthks- 
Biesel 85 Acrivos 1973) ; - - -, slender-body theory (Buckmaster 1972, n = 2). 

Figure 4 presents R(0) as a function of k and supports the observation from 
figure 2 that the present results are consistent with the solution with n = 2 in 
Buckmaster’s (1972) set of asymptotic solutions as k+O: 

Note that, for a fixed V ,  the solution with n = 2 has the smallest ratio I/R(O), 
i.e. the smallest deformation D .  Therefore, if one assumes that all the 
solutions (3.1) are stable and physically attainable, the n = 2 shape would be 
the one to be realized in the hypothetical experiment described earlier in which 
the strength of the shear rate is incrementally increased from zero. Since the 
numerical procedure is analogous to this hypothetical experiment, it is to be 
expected that the present analysis would converge to Buckmaster’s n = 2 
solution. 

Another reason why our solution, as k+0, should conform to (3.1) with 
n = 2 is that Buckmaster’s (1972) result, in our notation, P* = 4(n  + l ) / k  with n = 2 
can also be derived directly from his equation (2.22) by requiring that R(z) be 
analytic and even with R”(0) $: 0. Similarly, his corresponding expression for 
P* with n = 4 implies that R“(0) = 0 and RiV(0) =I= 0. In  our numerical scheme, 
though, in which the bubble was progressively elongated starting from a spherical 
shape, R”(0) was always found to be negative and the use of cubic splines ensured 
that R”(z) and, in all likelihood, a t  least some of the higher derivatives remained 
continuous everywhere. Hence the agreement of our results with the n = 2 
solution of Buckmaster shouId have been expected once it mas shown that our 
numerical scheme led to slender bubbles for small enough k.  
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Unfortunately, for increasingly slender bubble shapes it became more and more 
-difficult to obtain converged solutions because of a decreasing radius of con- 
vergence for Newton’s method and the need for more under-relaxation (smaller 
w). Thus no attempt was made to verify whether the increasingly slender shapes 
associated with n = 4,6 ,8 ,  . . ., in (3 .1)  could be generated by the present method. 
Consequently, although the present study has established the fact that the n = 2 
solution of (3.1) is physically attainable, the question of non-uniqueness raised 
.by Buckmaster (1 972) remains unresolved. 

Also, Buckmaster sought to determine whether the ends of the bubble are 
locally rounded or cusp-shaped and, using a local analysis, found that multiple 
cusp-shaped solutions which are valid within an exponentially small distance 
from the ends are a possibility. Unfortunately, as implemented, the present 
method can yield only the gross bubble shape and is unable to resolve such 
extremely fine local details. 

This work was supported in part by a grant from the National Science Founda- 
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